Tetrahedron, Vol. 52, No. 3, pp. 743-752, 1996
Pergamon Copyright © 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

0040-4020(95)01034-3

Nonclassical Furoxans - A Computational Study

Burkhard Klenke, Willy Friedrichsen”

Institut for Organische Chemie der Universitit Kiel,
Olshausenstrafie 40/60, D-24098 Kiel, Germany

0040-4020/96 $15.00 + 0.00

Dedicated to Prof. Dr. Hans Suschitzky on the occasion of his 80th birthday

Abstract: Ab initio and density functional theoretical studies on lassical furoxans (4a-c; 9, 10; 15, 16;
21a, b; 23, 24) and some of their open-chain o-dinitroso isomers (Sa-c; 6a-c; 7Ta-c; 11-14;

17-20, 22a, b; 25, 26) are presented.

INTRODUCTION

Benzofuroxans (e.g., 1)*>* constitute a unique class of molecules in so far as these compounds (as well as

furoxans themselves and heteroannulated derivatives) are far more stable than their open-chain 1,2-dinitroso

isomers (e.g., 2)*, but it is well known that compounds of this type may isomerize quite rapidly obviously

involving the o-dinitroso arene as an intermediate’. Whereas these isomerisations have been investigated rather
intensively the detection of 2 was reported only recently’, but as early as 1975 H. Suschitzky and coworkers
described experimental results which could be explained as trapping of an o-dinitrosobenzene™”. As has been

shown "' this phenomenon could be understood theoretically, if quantum chemical ab initio methods are used,

but the inclusion of electron correlation'’ is mandatory.
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In recent years density finctional methods (DFT)'®'* are being used more and more for several reasons. One of
the major advantages of these methods lies in the inclusion of electron correlation (comparable with post HF
methods at the MP2 level , depending on the precise methodology) together with a remarkable computational
speed®. As can be seen from the corresponding values of 1 and 2 (Scheme 1) a DFT calculation using Becke's
exchange® with Lee, Young and Parr correlation functional® puts the o-dinitroso benzene above 1 in agreement
with experimental data> and ab initio values at the post HF level'>"*. Therefore it seemed of interest to extend
these calculations to nonclassical furoxans, which have neither been treated by computational methods nor
observed (or even trapped) experimentally™.

RESULTS

Nonclassical® furoxans?’ (e.g., 4) can be formally derived from 1-methylenepentadienyl trianion (3) by
successive introduction of heteroatoms. Whether such bicyclic structures, which can be depicted as 1,2-dipoles (4a-c)
or - as in the case of 4¢ - with tetravalent sulfur (8)*”, are minima on the PES (potential energy surface) or are
not accessible because their open-chain 3,4-dinitroso isomers (5a-c, 6a-c, 7a-c) are far more stable is an open
question. Qur computations on furo[3,4-c][1,2,5]oxadiazole 1-oxide (4a), pyrrolo[3,4-c][1,2,5]oxadiazole 1-oxide
(4b), thieno[3,4-c][1,2,5]oxadiazole 1-oxide (4¢) and the corresponding o-dinitroso compounds (5a-c, 6a-c, 7a-¢)
gave the following results.
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Scheme 2.

1. Both on the RHF/6-31G* and DFT (BLYP/6-31G*)*** level 4a-c are minima*’ on the PES (Tablel);
2. Both on the RHF and DFT level there are at least three different 3,4-dinitroso conformers (anti: 5a-c; amphi:
6a-c, syn: Ta-c) as minima on the PES (Table 2)*;
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Table 1: Calculated Energies for 4a-c to 7a-c.
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AE*be Rﬂ’l/6-3 1G*//6-31G*

Compd. | RHF/6-31G* AE*< | BLYP/6-31G* | AE** | AE(+ZPE)**¢
4a -485.80117 0.0 -487.20608 0.0 -488.49858 0.0 0.0
4b -466.00817 0.0 -467.40688 0.0 -468.64699 0.0 0.0
4c -808.48538 0.0 -809.84945 0.0 -811.48151 0.0 0.0
Sa -485.89538 | -59.1 -487.23772 -19.9 -488.50444 -3.7 -4.6
5b -466.08995 | -51.3 -467.42230 -9.7 -468.65123 -2.7 -4.1
Sc -808.56220 | -48.2 -809.85919 -6.1 -811.47999 -1.0 -0.4
6a -485.89654 | -59.8 -487.23836 -20.3 -488.50664 -5.1 -6.0
6b -466.08964 | -51.1 -467.42146 -9.2 -468.65095 -2.5 -3.9
6¢ -808.56097 | -47.4 -809.85735 -5.0 -811.48196 -0.3 -1.8
7Ta -485.89553 | -59.2 -487.23749 -19.7 -488.50588 -4.6 -5.4
b -466.08723 | -49.6 -467.41932 -7.8 -468.64974 -1.7 -3.1
Te -808.55883 | -46.1 -809.85534 -3.7 -811.47661 -3.1 +1.9

* Relative energies. ® Values in kcal/mol. © Minus:

Table 2: Selected Torsion Angles for Sa-¢, 6a-¢ and 7a-¢*

more stable than 4. ° ZPE: Zero point vibrational energy (RHF/6-31G* values).

Compd. | method® | @ (a-b-c-d) | @ (b-a-e-f)ff Compd. method | @ (a-b-c-d) | © (b-a-e-f)
5a 6-31G* 180.0 - 7a 6-31G* 6.4 -
DFT 180.0 - DFT 0.0° -
5b 6-31G* 180.0 - 7b 6-31G* 5.1 -
DFT 180.0 - DFT 0.0° -
Sc 6-31G* 179.9 - 7c 6-31G* 18.9 -
DFT 179.9 - DFT 10.3 -
6a 6-31G* 0.0 179.8 ||
DFT 7.0 -157.8
6b 6-31G* 0.0 180.0
DFT 0.0 180.0
6¢ 6-31G* 0.0 179.9
DFT 10.6 -151.7 |

* Calculated without symmetry restrictions. ® 6-31G*: RHF/6-31G*; DFT: BLYP/6-31G*. °r (0-0)=2.916 A. *r (0-0)=2.902 A.
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On the RHF level the open-chain isomers (5-7) are far more stable than the nonclassical furoxans (4). The
energy difference (AE (open - cyclic)) amounts to -46 to -60 kcal/mol, with a significant decresse (AAE = 12-
13 keal/mol) from X=0 to X=S (Table 1). As in the furoxan series'""* AE (open - cyclic) drops sharply when
electron correlation is included (Table 1). Based on these data it would not be unexpected if (probably after
introduction of substituents which are known to exert a stabilizing influence in other nonclassical systems with
two fused five-membered heterocyclic rings*®) nonclassical furoxans could be either prepared as stable
compounds or trapped with suitable agents.
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Scheme 3.
Table 3: Calculated Bond Lengths (in A) for 4a-¢
Compd. | method a b c d e f g h i j
4a 6-31G* | 1.283 | 1.439 | 1.334 | 1.369 | 1.372 | 1.295 |{ 1.371 | 1.416 | 1.349 | 1.191
DFT 1.623 | 1.357 | 1.351 | 1.403 | 1.372 | 1.372 | 1.395 | 1.453 | 1.352 | 1.231
4b 6-31G* | 1.310 { 1.390 | 1.314 { 1.397 | 1.368 | 1.328 | 1.400 | 1.417 | 1.320 | 1.210
DFT 1.629 | 1.361 | 1.346 | 1.417 | 1.382 | 1.383 | 1.410 | 1.453 | 1.345 | 1.234
4c 6-31G* | 1.297 | 1.398 | 1.319 | 1.393 | 1.695 | 1.667 | 1.384 | 1.420 | 1.338 | 1.202
DFT 1.593 | 1.364 | 1.352 | 1.409 | 1.730 | 1.732 | 1.399 | 1.453 | 1.356 | 1.236
4. As in the case of benzofuroxan (and other annulated derivatives) the geometric data (bond lengths etc.)

seem to be in general agreement with expectation with one major exception: The endocyclic N-O bond (a in
Scheme 3, Table 3) seems to be too short (RHF/6-31G*) or far too long (DFT), although experimental values
are of course still lacking™*;

All data reported so far are the result of gas phase calculations. The computational introduction of a solvent
(presence of acetonitrile (¢ = 35.9) using the Onsager model; SCRF option in GAUSSIANS2) does not alter
AE (open - cyclic) significantly (AE, (open - cyclic) = E_ (6a) - E, (4a) = -20.4 kcal/mol [MP2/6-31G*//
6-31G*)).
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The theoretical treatment of nonclassical furoxans has also been extended to isoxazolo[3,4-c][1,2,5]oxadiazole
3- (1-) oxide (9, 10) and their 3,4-dinitroso compounds (11-14) (Scheme 4).
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Table 4: Calculated Energies for 9-14
method® 9 10 11 12 13 14
6-31G* -501.74606" -501.76742 -501.84634° -501.84940 -501.84748 -501.84789
AE +13.4° 0.0 -49.5 -51.4 -50.2 -50.5
MP2 -503.21537 -503.18939 -503.22518 -503.22756 -503.22567 -503.22608
AE 0.0 +16.3 -6.2 -7.6 -6.5 -6.7
DFT -504.52069 -504.52194 -504.52175¢ -504.52406 -504.52771 -504.52297
AE +0.8 0.0 +0.1 -1.3 -3.6 -0.7
ZPE 0.05912 0.05896 0.05705 0.05737 0.05753 0.05753
AEf +0.9 0.0 -1.1 2.3 -4.5 -1.5

* 6-31G*: RHF/6-31G*, MP2: MP2/6-31G*//6-31G*; DFT: BLYP/6-31G*; AE: AE (open - cychic .. .us.) 8t €ach level,
ZPE: ZPE (RHF/6-31G*). ® Energies in a.u. ° Energy differences in kcal/mol. ¢ Transition state (NIMAG=1). * Minimum.
f Zero point vibrational energies (ZPEs) included.
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The results, which are preseated in Table 4, will only be commented on briefly.

L

Both 9 and 10 are minima on the PES, with a strong preference of 9 on the MP2/6-31G*//6-31G* level and
a slight preference of 10 on the DFT level;

Compared with 4a the introduction of a further nitrogen atom reduces the energy difference between the bicyclic
nonclassical firoxan and the monocyclic dinitroso valence tautomer (AE (open - cyclic)). Although in all cases
the bicyclic firroxan (9, 10) is predicted to be /ess stable than the 3,4-dinitroso isoxazoles (11-14) one may expect
an equilibrium within the limits of detectability (AE(open - cyclic) = E(12) - E(9) = -7.6 kcal/mol (MP2/
6-31G*//6-31G* + ZPE (RHF/6-31G*)), AE(open - cyclic) = E(13) - E(10) = -4.5 kcal/mol (BLYP/ 6-31G*
+ ZPE (RHF/6-31G*))).

As for 4a-c the bond distance a in 9 and 10 seems to be out of the range of expectation (10: r (a) =1.629 A).
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The DFT results for isothiazolo[3,4-c][1,2,5]oxadiazole 3- (1-) oxide (15, 16) and the corresponding dinitroso
valence tautomers (17-20) are in general agreement with the data for 9-14. According to these calculations the
energy difference between 16 (the most stable furoxan) and 19 (the most stable dinitroso valence tautomer) is
calculated to be AE (19-16) = +1.4 kcal/mol, i.c., the nonclassical furoxan (16) should be more stable than its
corresponding dinitroso isomer (19). Whether these values are reliable is of course an open question, but an
experimental investigation of this system remains to be a challenge.
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Table 5: Calculated Energies for Compounds 15-20 (BLYP/6-31G*)

Compd. E* ZPE® AE°
15 -827.52920 29.8 +1.1
16 -827.53113 299 0.0
17 -827.52275 28.1 +3.5
18 -827.52397 28.2 +2.8
19 -827.52690 28.7 +1.4
20 -827.51962 28.2 +5.5

* Energies in a.u. ® Zero point vibrational energies in kcal/mol. © Relative energies (plus: /ess stable than 16, ZPEs included).

We have also carried out calculations on [1,2,5]oxadiazolo[3,4-c][1,2,5]oxadiazole 1-oxide (21a), [1,2,5]-
thiadiazolo[3,4-c][1,2,5]oxadiazole 1-oxide (21b) and the corresponding 3,4-dinitroso valence tautomers (22a,b).
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Scheme 6.
Table 6: Calculated Energies of 21a,b and 22a,b (in a.u.)
Compd. method® E’ Compd. method E
21a a -519.12516 21b a -841.84974
b -520.50345 b -843.54227
22a° al -519.17077 22b* a’ -841.85473
b° -520.50920 b -843.53415

® a: MP2/6-31G*//6-31G*, b: BLYP/6-31G*.

® Zero point vibrational energies included (RHF/6-31G* freq and BLYP/6-31G* freq, resp.).
¢ There are at least three different minima on the PES (syn, amphi, anti).

 Syn. © Amphi. £ Anti. # Two different conformers found (syn, anti).
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Some pertinent data are given in Table 6. Again - according to DFT calculations - the bicyclic nonclassical furoxan
21b should be more stable than the most stable open-chain valence tautomer (22b, anti-3,4-dinitroso[1,2,5)-
thiadiazole) by AE(22b-21b) = 5.1 kcal/mol (ZPEs included).

[1,2,5]Oxadiazolo[3,4-c][1,2,5]oxadiazole dioxides (furoxano[3,4-c]furoxans; 23, 24) are also found as minima
on the PES (Table 7). Both MP2/6-31G*//6-31G* as well as DFT calculations put them higher in energy than the
corresponding 3,4-dinitroso isomers (four different conformers are found).
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N N

Scheme 7.

CONCLUSION

0o e
IB
,,N = N\ Table 7: Energies of 23 - 26°
(o] (o]
\N >~ Nl
/ MP2/6-31G*//6-31G* | BLYP/6-31G*
(5]
0O 24
Oe 23 -594.12942 -595.70390
\e
N . .
’N\ §o 24 594.17213 595.70571
O\ — 25,26 -594.18643° -595.73689°
NT SN
26 1] ® Values in a.u. ®26; °2$ on the PES as minima.
(o]

As is known from furoxans, benzofuroxans and heteroannulated derivatives the inclusion of electron
correlation (MP2 level) is necessary to describe these compounds correctly in comparison with the corresponding
o-dinitroso valence tautomess. As has been shown in this paper nonclassical furoxans (4a-c; 9, 10; 15, 16; 21a, b;
23, 24) are found as minima using ab initio (RHF/6-31G*) and DFT (BLYP/6-31G*) methods. As a result of the
inclusion of electron correlation (MP2/6-31G*//6-31G*; BLYP/6-31G*) in some cases the energy difference
between nonclassical furoxans (15, 16; 22b) and their o-dinitroso counterparts reaches a region where an
experimental verification of an equilibrium seems to be possible™’.
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